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Embedded turbulence model in numerical methods
for hyperbolic conservation laws
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SUMMARY

The paper describes the use of numerical methods for hyperbolic conservation laws as an embed-
ded turbulence modelling approach. Di�erent Godunov-type schemes are utilized in computations of
Burgers’ turbulence and a two-dimensional mixing layer. The schemes include a total variation dimin-
ishing, characteristic-based scheme which is developed in this paper using the �ux limiter approach.
The embedded turbulence modelling property of the above methods is demonstrated through coarsely
resolved large eddy simulations with and without subgrid scale models. Copyright ? 2002 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

In large eddy simulation (LES) all scales larger than the �lter scale are computed via a
modi�ed (�ltered) set of the Navier–Stokes equations while all scales smaller than the �lter
scale (approximately the grid size) are modelled using a subgrid scale model (SGS). Numerical
accuracy presents a major challenge in LES, especially in coarsely resolved computations.
Previous studies [1–9] have shown that high-resolution (non-oscillatory) advection methods

can represent the e�ects of the unresolved scales of motion in computations of turbulent �ows
without using a SGS model. Following Harten’s de�nition [10], we classify as high resolution
methods those with the following properties: (i) provide at least second-order of accuracy in
smooth areas of the �ow, (ii) produce numerical solutions (relatively) free from spurious
oscillations, and (iii) in the case of discontinuities, the number of grid points in the transition
zone containing the shock wave is smaller in comparison with that of �rst-order monotone
methods. Godunov-type schemes belong to this family of methods.
Consider the system of hyperbolic conservation laws

@U
@t
+

@E(U )
@x

=0 (1)

∗Correspondence to: D. Drikakis, Department of Engineering, Queen Mary, University of London, Mile End Road,
London E1 4NS, U.K.

Received October 2001
Copyright ? 2002 John Wiley & Sons, Ltd. Revised December 2001



764 D. DRIKAKIS

The advective �ux derivative @E=@x can be discretized at the centre of the control volume
(i; j) using the values of the intercell �uxes, i.e. @E=@x=(Ei+1=2; j − Ei−1=2; j)=�x. Methods
developed for solving hyperbolic conservation laws can be written in the general form of a
Godunov-type intercell �ux

Ei+1=2 =
1
2
(EL + ER)− 1

2
|A|(UR −UL) (2)

where EL=EL(UL) and ER=ER(UR) denote the left and right states of the �ux, respectively,
at the cell face. Similarly, UL and UR are the left and right states, respectively, of the vector
U at the cell face. The second term in the right-hand-side (RHS) of Equation (2) is the
wave-speed dependent term (WST), where A approximates @E=@U (the entries of the Jacoby
matrix, in general). The WST term is a function of the local wave speeds and �ow data. It
is essentially acting as a non-linear numerical viscosity that adjusts the amount of numerical
dissipation locally, i.e. at the cell faces, in order to maintain monotonicity and conservation.
According to Godunov’s theorem [11] (linear) monotone methods are at most �rst-order

accurate. To obtain high-order of accuracy and avoid spurious oscillations one has to construct
non-linear methods. Total Variation Diminishing (TVD) methods are the most prominent class
of non-linear methods; a review of these methods can be found in Reference [12]. TVD
methods can be constructed by using the concept of �ux limiters [13–15]. According to this,
the TVD �ux can be de�ned by

ETVDi+1=2 =ELOi+1=2 +  (EHIi+1=2 − ELOi+1=2) (3)

where EHIi+1=2 is a high-order �ux (at least second-order), ELOi+1=2 is the �ux of a �rst-order
monotone scheme and  is a �ux limiter function. The low and high-order �uxes can be
written in the form of Equation (2). The limiter acts on the numerical viscosity (WST terms)
as a non-linear switch that is used to preserve monotonicity. It essentially provides a numerical
mechanism for adapting the choice of numerical method based upon the behaviour of the local
�ow gradients. This results in non-linear numerical viscosity that is dynamically adapted during
the computation as function of the local data. Similar conclusions can be drawn by analysing
the non-linear truncation error arising from the discretization of high-resolution methods [3; 4].
In this paper we develop a TVD scheme by combining a high-order (at least second-order)

characteristic-based (CB) scheme [9; 16] and the �rst-order Lax-Friedrich �ux [27] using the
�ux limiter approach. Computations of Burgers’ turbulence∗ [17] as well as a two-dimensional
mixing layer have been conducted using the CB and TVD-CB schemes with and without SGS
models. The dynamic [18; 19] and structure-function [20] SGS models have been utilized for
comparison purposes.
The paper is organized as follows. In Section 2 the TVD-characteristic-based scheme

for solving the incompressible Navier–Stokes equations is presented. In Section 3 results
from computations of Burgers’ turbulence and a two-dimensional mixing-layer using di�erent
Godunov-type schemes with and without SGS models are discussed. The conclusions drawn
from the present work are summarized in Section 4.

∗This can be considered as the one-dimensional analogue of the Navier–Stokes turbulence.
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EMBEDDED TURBULENCE MODEL IN TVD METHODS 765

2. TVD SCHEME FOR INCOMPRESSIBLE FLOWS

2.1. Numerical framework

To take full advantage of the Godunov methods designed for hyperbolic conservation laws,
the incompressible Navier–Stokes equations are cast in a compressible format by means of
the arti�cial-compressibility approach [21]. The classical formulation of Chorin [21], suitable
for steady-state problems, is extended to transient �ows via dual-time stepping [9; 22; 23]

1
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where � is the arti�cial compressibility parameter, ui=(u; v; w) are the velocity components,
p is the pressure, and Re is the Reynolds number; the indices i; j=1; 2; 3 refer to the space
co-ordinates x; y; z. The above system provides a coupling of the equations with respect to
the pseudotime �, at each real time step t. The attenuation forcing −@ui=@t on the RHS of
the momentum equation damps the �ow divergence to zero at the rate � ≡ (�t)−1. In the
steady-state at �= t +�t, all @=@� terms vanish.
In the present model the default time integration with respect to � employs a fourth-order

Runge–Kutta scheme [24] (selected, primarily, for the optimum performance on non-uniform
grids) while a non-linear multigrid method [25] is used to accelerate the convergence towards
the steady state. The viscous terms are discretized by standard central di�erences.
Godunov-type schemes are employed for discretizing the three advective �uxes of the

system Equations (4)–(5). In Cartesian co-ordinates the advective �ux associated with the
derivative in x-direction is written in matrix form as

E≡




�u

u2 + p

uv

uw


 (6)

The matrix of primitive variables is U =(p; u; v; w)T . The Jacobian of this �ux has

eigenvalues: �0 = u; �1 = �0 + s̃; �2 = �0 − s̃, where s̃=
√

�20 + �.

2.2. TVD formulation

The TVD �ux is de�ned by Equation (3). We have employed the Lax–Friedrichs �ux [27]
as a low-order �ux

ELOi+1=2 =
1
2
(Ei + Ei+1)− 1

2
�x
�t
(Ui+1 −Ui) (7)

The CB scheme of [9; 16] has been employed as a high-order �ux.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:763–781



766 D. DRIKAKIS

The CB scheme computes the advective �ux in a sequence of reconstruction steps:

1. For each characteristic (denoted by l=0; 1; 2), we calculate the variables Ul using an
upwind Godunov scheme

Ul=
1
2
[(1 + sign(�l))UL + (1− sign(�l))UR] (8)

where

sign(�l)=

{−1 for �l¡0

1 for �l¿0
(9)

The left, UL, and right, UR, states of the primitive variables are calculated by high-order
interpolation from the variables in the neighbouring cells, for example,

UL=
1
6
(5Ui −Ui−1 + 2Ui+1); UR=

1
6
(5Ui+1 −Ui+2 + 2Ui) (10)

Note that the interpolation in Equation (10) is not third-order-accurate per se, but it
assures third-order accuracy of the term (UR −UL) in Equation (2) [16].

2. Using Ul, we calculate the new variables Ũ (reconstructed variables). The variables Ũ
associated with the advective �ux E (in Cartesian co-ordinates†) are given by

Ũ =




p̃

ũ

ṽ

w̃


=

1
2s̃




�1�2(u2 − u1) + �1p2 − �2p1

p1 − p2 + �1u1 − �2u2

2s̃v0

2s̃w0


 (11)

3. The advective �ux, ECB, for the CB scheme is calculated using the variables Ũ , i.e.
ECB =E(Ũ ).

For non-linear and multi-dimensional systems such as the Navier–Stokes equations it is not
possible to derive the accuracy of Godunov-type schemes. For linear problems such as the
linear advection equation ut + (au)x=0, where a is a constant, the accuracy can be derived
by using Roe’s theorem [12; 26]. The theorem states that any scheme written in the form

un+1
i =

kR∑
k=−kL

ckun
i+k (12)

is pth order accurate in space and time if

kR∑
k=−kL

kqck =(−C)q; 06q6p (13)

where kL and kR are two non-negative integers, ck are scheme dependent coe�cients, and
C= a�t=�x is the Courant–Friedrichs–Lewy (CFL) number.

†The derivation of Ũ as function of Ul in generalized curvilinear co-ordinates can be found in References [16] and
[9] for 2D and 3D problems, respectively.
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Application of the above theorem in the case of the CB scheme‡ shows that the CB scheme
is �rst-, second-§ and third-order accurate in both space and time when it is implemented
in conjunction with the Euler, second-order TVD Runge–Kutta [24], and third-order TVD
Runge–Kutta time-stepping schemes [24], respectively.
The TVD scheme based on the combination of the Lax–Friedrichs and CB schemes is

hereafter referred to as ‘TVD-CB’.

2.3. Flux limiters

To construct �ux limiters for the TVD-CB scheme we employ the linear advection equation
ut+fx=0, where f= au. Using the upwind Godunov discretization de�ned by Equations (8)
and (10), we write the high-order �ux fHI as

fHIi+1=2 =�−1fi−1 + �0fi + �1fi+1 + �2fi+2 (14)

where �−1 =−(1+s)=12; �0 = (7+3s)=12; �1 = (7−3s)=12; �2 =−(1−s)=12, and s=sign(a).
We also write the low-order �ux fLO as

fLO = �0fi + �1fi+1 (15)

where for the Lax–Friedrich �ux, �0 = (1 + C)=2C and �1 = − (1 − C)=2C ([12], p. 419).
Using Equations (14) and (15), the TVD version (Equation (3)) of the �ux f at the cell
faces i − 1=2 and i + 1=2 is written

fTVDi+1=2 = �−1 fi−1 + �2 fi+2 + [�0 +  (�0 − �0)]fi + [�1 +  (�1 − �1)]fi+1 (16)

fTVDi−1=2 = �−1 fi−2 + �2 fi+1 + [�0 +  (�0 − �0)]fi−1 + [�1 +  (�1 − �1)]fi (17)

Using Equations (16) and (17) the discretized linear advection equation is written

un+1
i = un

i − C�ui−1=2 +D�ui+1=2 − E�ui−3=2 + F�ui+3=2 (18)

where �ui−1=2 = ui − ui−1; �ui+1=2 = ui+1 − ui; �ui−3=2 = ui−1 − ui−2; �ui+3=2 = ui+2 − ui+1;
C=C[�0 +  (�0 − �0)]; D= − C[�1 +  (�1 − �1)]; E=C�−1 , and F = − C�2 .
To derive limiter functions such that the scheme will be TVD, we apply the data compat-

ibility condition [12; 26]. Harten’s theorem [10] can also be used for deriving �ux limiters
but the data compatibility condition is a stronger constraint [12].¶ The data compatibility
condition is expressed as follows

06
un+1
i − un

i

un
i−s − un

i
61 (19)

‡Note that for the linear advection equation the CB scheme is obtained by applying only the �rst reconstruction
step. This is equivalent to the extension of the original �rst-order Godunov method in conjunction with a longer
computational stencil.
§The coe�cients for second-order of accuracy are given in Appendix A.
¶Di�erent approaches for building monotone schemes are also discussed in Reference [28].

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:763–781



768 D. DRIKAKIS

For a¿0 (a similar analysis can be applied for a¡0), Equation (18) can be written as‖

un+1
i − un

i

un
i−1 − un

i
=C − D

r
+

E
r̃

(20)

where r=�ui−1=2=�ui+1=2 and r̃=�ui−1=2=�ui−3=2. Note that depending on the sign of a the
ratio of upwind change r should be correctly interpreted, i.e.

r=
�upw

�loc
=




un
i − un

i−1
un
i+1 − un

i
; a¿0

un
i+2 − un

i+1

un
i+1 − un

i
; a¡0

(21)

Equations (19) and (20) give

06C[�0 +  (�0 − �0)] + C[�1 +  (�1 − �1)]
1
r
−  

C

6r̃
61 (22)

We impose a global constraint

 B6 6 T (23)

where  T and  B are the top and bottom boundaries of the �ux limiter, which are considered
to be independent of r and r̃; Equation (23) gives

C

[
�0 +  T

(
�0 − �0 − 1

6r̃

)]
6C

[
�0 +  

(
�0 − �0 − 1

6r̃

)]

6C

[
�0 +  B

(
�0 − �0 − 1

6r̃

)]
(24)

assuming that �0 − �0 − 1=6r̃60 that is equivalent to

r̃=
ui−1 − ui

ui−1 − ui−2
¡

C

2C − 3 (25)

For �0 − �0 − 1=6r̃¿0 the analysis will be the same if in Equation (24) the terms  B and  T

replace each other.
To satisfy Equations (22) and (24), the following inequality should be satis�ed

−C

[
�0 +  T

(
�0 − �0 − 1

6r̃

)]
6C[�1 +  (�1 − �1)]

1
r

6 1− C

[
�0 +  B

(
�0 − �0 − 1

6r̃

)]
(26)

‖For a¿0 E and F take the values −C =6 and 0, respectively.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:763–781



EMBEDDED TURBULENCE MODEL IN TVD METHODS 769

Analysis of the left inequality gives

 =

{
¿ L for r¿0

6 L for r¡0
(27)

where

 L=
1

�1 − �1

[
−r

(
�0 +  T

(
�0 − �0 − 1

6r̃

))
− �1

]
(28)

Analysis of the right inequality gives

 =

{
6 R for r¿0

¿ R for r¡0
(29)

where

 R=
1

�1 − �1

[
r
C

− r
(
�0 +  B

(
�0 − �0 − 1

6r̃

))
− �1

]
(30)

Equations (28) and (30) are functions of the ratios r and r̃. For large �ow gradients
occurring within the stencil i − 1; i and i + 1; �ui−3=2¡�ui+1=2 thus r=r̃¡1. As a result,
 Br=r̃ and  T r=r̃ can be considered small compared to the rest terms in Equations (28) and
(30) thus can be dropped. For Burgers’ turbulence and the two-dimensional mixing layer
considered in this work, it was found that these terms do not a�ect the accuracy of the
computations. Alternatively, one can attempt to approximate  Br=r̃ and  T r=r̃ as functions of
the ratio r, but this is beyond the scope of the present paper.
We substitute �0; �1; �0 and �1 into Equations (28) and (30) and obtain

 R =
3(1− C)− (2C − 3) B

3− C
r +

3(1− C)
3− C

(31)

 L =−3 + 3C+ (2C − 3) T

3− C
r +

3(1− C)
3− C

(32)

The construction of the limiter functions  L and  R is completed after de�ning the top
and bottom boundaries of the �ux limiter. Concerning this point, there is a �exibility in
constructing di�erent TVD schemes depending on the de�nitions of  B and  T .
For  B=0 and  T =3(1 + C)=(3− 2C), we obtain

 R =
3(1− C)
3− C

(r + 1) (33)

 L =
3(1− C)
3− C

(34)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:763–781



770 D. DRIKAKIS

Using Equations (33) and (34), we de�ne the �ux limiter (hereafter referred to as
CB-limiter)

 =




3(1− C)
3− C

if r60

3(1− C)
3− C

(r + 1) if 06r6
C(7− 3C)

(3− 2C)(1− C)

3(1 + C)
3− 2C if r¿

C(7− 3C)
(3− 2C)(1− C)

(35)

In the literature, one can �nd limiters for TVD schemes designed for the compressible Euler
equations. An example is the the Superbee limiter [15]

 sb=




0 r60

2r 06r6 1
2

1 1
26r61

min[2;  g + (1−  g)r] r¿1

(36)

where  g=(1 − C)=(1 + C). Although the �ux limiter should be designed for the numerical
scheme in question, we have found that converged solutions can also be obtained by imple-
menting limiters developed for other schemes. Therefore, in addition to the CB-limiter we
have also implemented the TVD-CB scheme in conjunction with the Superbee limiter; the
e�ects on the accuracy of the computations are discussed in Section 3.
To calculate any of the �ux limiter functions we use the following procedure [12]:

• The ratios rL and rR are calculated at the cell faces

rLi+ 1
2
=
�ui−1=2
�ui+1=2

; rRi+ 1
2
=
�ui+3=2

�ui+1=2
(37)

where �(·) denotes u-velocity di�erences at the cell faces.∗∗

• Then we compute the �ux limiter as
 = min( (rLi+1=2);  (r

R
i+1=2)) (38)

The �ux limiter  is applied to all �ux components.

3. NUMERICAL EXPERIMENTS

We have employed the Burgers’ equation

@u
@t
+ u

@u
@x
= �

@2u
@x2

(39)

∗∗The pressure or any velocity component can be used to calculate the intercell slopes. For the mixing layer �ow
considered in this paper, we have found that the velocity u is the most appropriate variable.
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Figure 1. Initial condition for Burgers’ problem of turbulence.

subject to periodic boundary conditions

u(x; t)= u(x + l; t); 06x6l (40)

and a random initial condition for the velocity u (Figure 1). The wave spectrum of the velocity
pro�le of Figure 1 has a maximum at log(k)=1:283, where k is the wavenumber. We therefore
de�ne a characteristic length scale Lo=1= log

−1(1:283)L=0:052L (L is an arbitrary unit of
length; here L=1), and a characteristic velocity uo as the root mean square of the initial
condition. The viscosity � can then be de�ned by �=(Louo)=Re, where Re is the Reynolds
number. In Equation (40) we have de�ned the length of the domain as l=12L=12. Our
computations have been conducted for Re=6000.
We perform spatial �ltering [29] of Equation (39) and obtain

@ �u
@t
+
1
2

@ �u2

@x
= �

@2 �u
@x2

− 1
2
@�
@x

(41)

where �= u2 − �u2 is the subgrid-scale (SGS) stress. The �ltered velocity �u is de�ned by

�u(x; t)=
∫ +∞

−∞
G(x − x′)u(x′; t) dx′ (42)

where G is the �lter function.
We have carried out a series of computations for Burgers’ turbulence using the CB and

TVD-CB schemes with and without SGS models. To assess the accuracy of coarsely resolved
computations we have initially carried out a computation using a very �ne grid (9000 grid
points) and a very small time step (�t=0:0001). The obtained solution (henceforth labelled
DNS or ‘Direct Numerical Solution’) is grid and time-step independent and can, therefore, be
considered as the exact solution.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:763–781
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The coarsely resolved computations have been carried out using 700 grid points and 100
time steps. In the numerical experiments we have employed the following schemes and SGS
models:††

• The CB scheme without a SGS model (solution labelled ‘CB’).
• The TVD-CB scheme without a SGS model (solution labelled ‘TVD-CB’).
• The CB scheme in conjunction with the modi�ed version [18] of the dynamic SGS model
[19] (solution labelled ‘CB-D’).

• The CB scheme in conjunction with the structure-function SGS model [20] (solution
labelled ‘CB-SF’).

• The TVD-CB scheme in conjunction with the structure-function SGS model (solution
labelled ‘TVD-CB & SF-Model’).

In Figure 2 we present the results for the kurtosis distribution. The computations reveal
that the use of a SGS model does not necessarily improve the results, e.g. compare the CB
solutions with and without the dynamic SGS model, as well as the TVD-CB solutions with
and without the structure-function SGS model. Implementation of the SGS models seems to
improve the results in certain time intervals of the computation, but the results deteriorate in
other time intervals. The best result for the averaged kurtosis (Table I) is obtained by the
TVD-CB scheme without a SGS model.
Computation of Burgers’ turbulence leads to an energy spectrum E(k)∝ k−2 [17]. The wave

spectra for all schemes and models are shown in Figure 3.
In all spectra curves we have applied smoothing in order to reduce ‘noise’ and thus make

the data presentable. For the CB scheme with and without the dynamic SGS model the results
look very similar and in both cases the spectra predictions are inferior than those obtained
by this scheme in conjunction with the structure-function SGS model. The TVD-CB scheme
predicts overall the best spectra behaviour. Similar to the kurtosis results, the combination
of the TVD-CB scheme with the structure-function SGS model does not improve the spectra
results.
Further, we have carried out numerical experiments for a two-dimensional temporal mixing

layer de�ned by a velocity pro�le u(y)= tanh(y), where u(y) and y are made dimensionless
by the free-stream velocity, U , and half of the initial vorticity thickness, �=2 (� is the initial
vorticity thickness). The dimensionless time is t=2TU=�, where T is the time with dimensions.
The Reynolds number is de�ned as Re=0:5U�=�, where � is the kinematic viscosity; our
numerical experiments have been conducted for Re=200. We solve the equations in a square
domain [0; L]× [−L=2; L=2], imposing periodic boundary conditions in the x-direction and
free slip walls in the y-direction, i.e. v=(@p=@y)= (@u=@y)=0 at the boundaries. Similarly
with previous studies [31; 32], we add to the basic �ow a sine wave superimposed by a
solenoidal white-noise perturbation of small amplitude. The initial conditions for u and v are
given by

uin = u(y) + d1f(x; y) exp(−y2) + d2 sin(�x=�u) (43)

vin = d2 sin(�x=�u) (44)

††For modelling �= u2 − �u2.
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Figure 2. Kurtosis distributions: the upper plot compares the DNS results with the correspond-
ing results obtained by the CB scheme without a SGS model (solution labelled ‘CB’), TVD-CB
scheme without a SGS model (solution labelled ‘TVD-CB’), CB scheme in conjunction with the
structure-function SGS model (solution labelled ‘CB-SF’), and CB in conjunction with the dy-
namic SGS model (solution labelled ‘CB-D’); the lower plot compares the results obtained by the
TVD-CB scheme with the structure-function SGS model (solution labelled ‘TVD-CB & SF-Model’) and

without it (solution labelled ‘TVD-CB’).

where f(x; y) is the perturbation function (having values in the interval [0; 1]) and �u is the
most unstable wavelength which, according to the theory [33], is de�ned as �u=7�; in our
experiments d1 = 0:1 and d2 = 0:05. The length of the computational domain should be taken
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Table I. Averaged kurtosis for di�erent Godunov-type
schemes and SGS models.

Method Averaged kurtosis

DNS 2.8371
TVD-CB & SF-Model 2.8131
TVD-CB 2.8487
CB 3.1515
CB-SF 3.
CB-D 3.2192

equal to Ln=(0:5�)=14n (dimensionless) for obtaining n Kelvin–Helmoltz vortices [32]. In the
present work, we have conducted computations for n=2. Two vortices are initially formed
and later merge to form one large vortex (Figure 4).
Computations have been conducted on a sequence of increasingly �ner grids contain-

ing 64× 64; 128× 128; 256× 256 and 512× 512 grid points, using di�erent Godunov-type
schemes without a SGS model. The results on 256× 256 and 512× 512 grids were almost
identical: the di�erences in the velocity values were less than 1%. Hence, the results on the
256× 256 grid are referred to as the corresponding ‘2D DNS’.
In addition to the CB scheme, we have also employed, for comparison purposes, the

Einfeldt’s HLLE Godunov-type scheme [30] (see Appendix B). Figure 5 shows the results for
the CB and HLLE schemes on the 64× 64 grid. The same contour values have been plotted
for both schemes at two di�erent time instants. The HLLE scheme results in thicker—more
di�usive—shear layers at t=4; additionally, the details of the core of the vortex at t=14 are
missing. The CB scheme provides very similar results on the 64× 64 and 128× 128 grids.
The isovorticity contours for the TVD-CB scheme (not plotted here) were very similar to
those obtained by the CB scheme.
Comparisons of the various solutions can be obtained on the basis of the vorticity thickness.

This is de�ned as �=2U=(d �u=dy)max, where the ‘bar’ denotes an average in the x-direction.
In Figure 6 we plot the growth of vorticity thickness for all schemes, while in Figure 7 we
compare the results obtained by the TVD-CB scheme with and without the structure-function
SGS model.
The results show the following:

1. The particular details of the discretization even for schemes belonging to the same class
of methods, Godunov-type in the present case, have signi�cant impact on the accuracy
of coarsely resolved computations. Speci�cally, the CB scheme provides better results
than the HLLE scheme on the 64× 64 grid, while the TVD-CB scheme is slightly less
di�usive than the CB scheme.

2. The solution without the SGS model is better than the one with it (Figure 7).
3. The design details of the �ux limiter also a�ect the accuracy. For example, the Superbee
limiter gives inferior results than the CB limiter, especially for the peak values of the
vorticity thickness. This can be attributed to the fact that the Superbee limiter has not
been designed for the case of the CB scheme.
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Figure 3. Wavenumber spectra for Burgers’ turbulence as obtained by: DNS, CB, CB-SF, CB-D,
TVD-CB & SF-Model, and TVD-CB schemes (see caption of Figure 2 and the text for description

of di�erent schemes and models).

In Table II, the total number of multigrid (MG) cycles required by the non-linear multi-
grid method [25] in conjunction with di�erent Godunov-type schemes, is reported. The table
shows that: (i) the e�ciency of the computations depends strongly on the numerical scheme
employed, (ii) the TVD-CB scheme is faster than the HLLE and CB schemes, and (iii) the
non-linear MG method requires less MG sweeps as the grid is further re�ned.
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CB 128x128, t=4 CB 128x128, t=14

Figure 4. Isovorticity contours on the 128× 128 grid, at t=4 (left plot) and t=14 (right plot).

HLLE 64x64, t=4 HLLE 64x64, t=14

CB 64x64, t=14CB 64x64, t=4

Figure 5. Isovorticity contours on the 64× 64 grid for the CB [16; 9] and
HLLE [30] Godunov-type schemes.
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Figure 6. Growth of the vorticity thickness computed by di�erent Godunov-type schemes;
TVD-CB and TVD-SBE are the TVD versions of the CB scheme in conjunction with the
CB and Superbee limiters, respectively. On the 256× 256 grid, the results obtained by the

CB and TVD-CB schemes are indistinguishable.

4. CONCLUDING REMARKS

TVD methods which have been developed for solving hyperbolic conservation laws encompass
an embedded turbulence model which mimics properties of turbulence in a similar fashion
with SGS models developed for LES. These methods essentially provide a non-linear numer-
ical viscosity mechanism which is a function of the wave-speed dependent terms and �ux
limiters.
In this paper di�erent Godunov-type schemes were utilized in computations of Burgers’

turbulence and a two-dimensional mixing layer. The schemes included a TVD Godunov-
type scheme developed here using the concept of �ux limiters. The computations were con-
ducted with and without SGS models. The accuracy depends on both the Godunov-type
scheme and the SGS model. The TVD Godunov-type scheme provided the best results
without use of a SGS model. Even though a theory that justi�es the use of TVD meth-
ods as a turbulence modelling approach has not yet been developed, the present results
show that these methods can be utilized in turbulent �ow computations without SGS
models.
Numerical challenges arising from the presence of wall boundaries will be addressed in a

future work. Our end target is to develop numerical methods for turbulent �ows which can
attain increased accuracy in coarsely resolved computations.
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Figure 7. Comparison of the solutions obtained by the TVD-CB scheme with and
without the structure-function SGS model; the solutions are labelled ‘TVD-CB &

SF-Model’ and ‘TVD-CB’, respectively.

Table II. Multigrid (MG) cycles required by di�erent
Godunov-type schemes for completing 50 time steps (corres-

ponding to dimensionless t=200).

Method MG cycles

CB, 2562 334
CB, 1282 663
CB, 642 883
TVD-CB, 642 353
HLLE, 642 531

APPENDIX A: COEFFICIENTS FOR THE SECOND-ORDER CB SCHEME
FOR THE LINEAR ADVECTION EQUATION

The second-order Runge–Kutta discretization of the linear advection equation yields

K1 =−�t fx(tn; un)

K2 =−�t fx(tn +�t; un + K1)

un+1 = un +
1
2
(K1 + K2)

(45)
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Implementation of the CB �ux (Equation (14)) gives

K1 = b−2un
i−2 + b−1un

i−1 + b0un
i + b1un

i+1 + b2un
i+2 (46)

K2 = b2−2u
n
i−4 + b−2b−1un

i−3 + b−2(1 + b0)un
i−2 + b−2b1un

i−1 + b−2b2un
i

b−1b−2un
i−3 + b2−1u

n
i−2 + b−1(1 + b0)un

i−1 + b−1b1un
i + b−1b2un

i+1

b0b−2un
i−2 + b0b−1un

i−1 + b0(1 + b0)un
i + b0b1un

i+1 + b0b2un
i+2

b1b−2un
i−1 + b1b−1un

i + b1(1 + b0)un
i+1 + b21u

n
i+2 + b1b2un

i+3

b2b−2un
i + b2b−1un

i+1 + b2(1 + b0)un
i+2 + b2b1un

i+3 + b22u
n
i+4 (47)

where

b−2 =− C

12
(1 + s); b−1 =

C

12
(8 + 4s)

b0 =−C

2
s; b1 = − C

12
(8− 4s); b2 =

C

12
(1− s) (48)

Using Equations (46) and (47), Equation (45) yields

un+1
i = c−4un

i−4 + c−3un
i−3 + c−2un

i−2 + c−1un
i−1

+ c0un
i + c1un

i+1 + c2un
i+2 + c3un

i+3 + c4un
i+4 (49)

where
c−4 = 1

2b
2
−2

c−3 = b−2b−1

c−2 = 1
2(2b0b−2 + 2b−2 + b2−1)

c−1 = b1b−2 + b0b−1 + b−1

c0 = 1
2(2b2b−2 + 2b1b−1 + b20 + 2b0) + 1

c1 = b2b−1 + b0b1 + b1

c2 = 1
2(2b0b2 + 2b2 + b21)

c3 = b2b1

c4 = 1
2b
2
2

(50)

The coe�cients (Equation (50)) satisfy Equation (13) for second-order of accuracy.

APPENDIX B: EINFELDT’S HLLE SCHEME [30]

The HLLE scheme [30] is an extension of the Harten–Lax–van Leer (HLL) scheme [34]. The
central idea of the HLL scheme is to assume a particular wave con�guration for the solution,
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consisting of two waves separating three constant states. Assuming that the wave speeds are
de�ned through a given algorithm, one can apply the integral form of the conservation laws
and obtain an approximate expression for the �ux. The di�erence between the original HLL
scheme [34] and its HLLE version lies on the way the wave speeds are calculated. According
to HLLE scheme the �ux E is de�ned by

Ei+1=2 =
b+i+1=2EL − b−i+1=2ER

b+i+1=2 − b−i+1=2
+

b+i+1=2b
−
i+1=2

b+i+1=2 − b−i+1=2
(UR −UL) (51)

where b+i+1=2 = max((�1)i ; (�1)i+1) and b−i+1=2= min((�2)i ; (�2)i+1). Implementation of the HLLE
scheme in incompressible �ows is also discussed in Reference [35].
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